Museums exist around the world, and cover a diverse range of subjects. In Canada's case, there are national museums of civilization, science and technology, natural history, art gallery, war, and human rights. There are no major museums dedicated to climate change generally, including the specific subject of global warming.
Of all the issues facing the populations of the world today, climate change is the most important. Without a major focus, the future of homo sapiens and other species around the globe will deteriorate dramatically within the next century.
Climate change and global warming are also topics about which populations around the globe are remarkably uninformed. This is particularly true in Canada and the United States.
Based on this, a National Museum of Climate Change and Global Warming is put forward for Canada, and perhaps other countries.
Concepts
Here a some concepts on which a Canadian National Museum of Climate Change and Global Warming could be based.
The Canadian National Museum of Climate Change and Global Warming should be developed with the view that it will be part of a network of climate change and global warming museums that includes national, regional, city and other museums, with a free flow of exhibits, ideas and concepts.
The museum should be a museum based on science. As a science museum, it should be based on the following principles:
It should be based on theories, studies, and similar sources from peer reviewed respected academic journals or equivalents.
It should address not only our current understandings but also how these understandings were derived.
It should focus on the global warming aspect of climate science. The focus should be on the radiative balance and related issues, so that the key causes of global warming do not get lost in the details of climate science.
It should not be a "political" museum. This will protect the museum in the long term from political debates, changes in governing parties, and public controversies. Specifically, this means:
Discussion of international and national emission targets should not be addressed. These targets are inherently political, based on political judgments about what is doable within a time-frame.
It should not address projected emissions. These are based on assumptions about greenhouse gas emissions going forward, and these assumptions are inherently political (e.g. business as usual, drastic immediate reductions). What happens in the future is a result of political decisions in the present.
It should not address public policies, policy options, and policy issues, including:
Mitigation Strategies.
Economics of climate change.
Environmental laws.
Sectoral policies.
National responsibilities for past emissions.
It should not address the climate change denial industry and deliberate misinformation campaigns, but should draw attention to legitimate scientific differences and debates.
To be relevant to the location of Canada's national museum. and the locations where other major museums are developed, the museum has to provide relevant regional and local information, while emphasizing the universal character of the science. For example, impacts would be largely regional. Most exhibits would be relevant anywhere in the world or within a country and should be designed that way. Where the science has regional implications, the regional components should be designed so that the regional components are easily shareable with relevant modifications in the specifics.
Canada's National Museum of Climate Change and Global Warming should be designed for the online world, so that the information can be shared via internet for those not able to travel to the Museum.
As climate science is continuing to evolve, the Canadian National Museum needs to be designed so that exhibits can be updated regularly and there is room to display new scientific findings.
While the federal government typically funds Canada's national museums, a National Museum of Climate Change and Global Warming is potentially fundable at least in part by Canadian citizens and corporations through donations and crowd funding. It should be designed to accommodate this funding, provided the funding is not allowed to bias the content.
Canada's museum managers are experts in developing exhibits and presenting materials in interesting, and often interactive, ways. They should be allowed to demonstrated their skills within a science-based framework.
An example of science-based design is provided below.
Canadian National Museum of Climate Change and Global Warming
Hall A: Earth's Energy Budget
Main Entrance
Hall G: The Science of Climate Change
Hall B: Lessons from the Past
Hall F: Getting to Zero Emissions and Beyond: the Technologies
Hall C: The Workings of the Climate System
Hall D: Climate Models
Hall E: Impacts of Global Warming
Components
Tickets
Directions to relevant halls
Shop
Washrooms
Purpose Statements
Concepts/Definitions
Global Warming: The long-term rise in the average temperature of the Earth's climate system.
Climate Change: Occurs when changes in Earth's climate system result in new weather patterns that remain in place for an extended period of time.
Climate System: are made up of Earth's water, ice, atmosphere, rocky crust, and all living things.
Climate:
Content Summary: The earth's climate is a delicate balance between energy in and energy out. Earth's Energy Budget is the accounting for the balance between the energy that Earth receives from the Sun, and the energy the Earth radiates back into outer space after having been distributed throughout Earth's climate system. See Wikipedia's Earth's Energy Budget
Topics
Incoming Radiant Energy
Sun's Energy Output
Earth's Orbit and Tilt
Earth's Internal Heat and Other Small Effects
Geothermal Heat Flux
Human Production of Energy
Photosynthesis
Outgoing Energy
Atmospheric Composition
Aerosols
Pollutants
Volcanic Dust
Greenhouse Gases
Natural via Carbon Cycle
Human Generated
Animal Husbandry
The Albedo (reflectivity) of Surface Properties
Plate Tectonics and Land Surface Colours
Water, Ice and Snow
Human Land Use
Cloud cover
Vegetation and Land Use patterns
Calculating the Balance
Content Summary: The workings of the Earth's Energy Budget can be understood by looking at how it determined Earth's climate history in the distant and recent past. Scientists have devised a number of mechanisms to explore the nature of past climates. A Lessons from the past will help in the understanding of future climates.
Topics
Climates Prior to the Industrial Revolutions. For key content, see Wikipedia's Paleoclimatology
Modern Climates
Climates prior to the Industrial Revolution: Paleoclimatology
Proxy Techniques
Ice in Glaciers, Ice Caps and Ice Sheets
Dendroclimatology
Sedimentary Analysis
Sclerochronology
Landscapes and Landforms
Timing of Proxies
Historic Climates
Faint Young Sun Paradox (start)
Huronian Glaciation (~2400 Mya Earth completely covered in ice probably due to Great Oxygenation Event)
Later Neoproterozoic Snowball Earth (~600 Mya, precursor to the Cambrian Explosion)
Andean-Saharan glaciation (~450 Mya)
Carboniferous Rainforest Collapse (~300 Mya)
Permian–Triassic Extinction Event (251.4 Mya)
Oceanic Anoxic Events (~120 Mya, 93 Mya, and others)
Cretaceous–Paleogene extinction event (66 Mya)
Paleocene–Eocene Thermal Maximum (Paleocene–Eocene, 55Mya)
Younger Dryas/The Big Freeze (~11,000 BC)
Holocene climatic optimum (~7000–3000 BC)
Extreme Weather Events of 535–536 (535–536 AD)
Medieval Warm Period (900–1300)
Little Ice Age (1300–1800)
Year Without a Summer (1816)
Lessons Learned
Climate change is on ongoing process.
Humans evolved in a favourable and uncommon climate period.
Climate change is not always pleasant, illustrated by looking at past climates on the location of the museum.
Content Summary:The workings of the Earth's Climate Systems interact with themselves and each other in complex ways, with some workings reinforcing warming processes and others countering them. Historically, these workings have created a cyclical pattern of patterns alternating between warmer and colder. But it is not inevitable that these processes are cyclical. Venus is an example where the warming process got out of control.
Topics
Elements
The Atmosphere: the layer of gases, commonly known as air, that surrounds the Earth and is retained by Earth's gravity. See Wikipedia's Atmosphere.
The Hydrosphere: The combined mass of water found on, under, and above the surface of a planet earth. See Wikipedia's Hydrosphere
The Cryosphere: An all-encompassing term for those portions of Earth's surface where water is in solid form, including sea ice, lake ice, river ice, snow cover, glaciers, ice caps, ice sheets, and frozen ground (which includes permafrost). See Widipedia's Cryosphere
The Lithosphere: the rigid,outermost shell of Earth that is defined by its rigid mechanical properties. See Wikipedia's Lithsphere
The Biosphere (living things) See Wikipedia's Biosphere
Content Summary: Modeling attempts to capture relationships among variables in equations in a quantitative way. Models help us understand and predict events. Models are used everywhere in modern society. Climate models help us understand and quantify what is happening, to disentangle what is causing what, and to predict what will happen.
Topics
Utility of numerical models in investigating how the climate system works and how it will respond to continued greenhouse gas buildup.
Coupled atmosphere–ocean–sea ice global climate models: General circulation models
Box models for flows across and within ocean basins
Others
Validating climate models
Reliability and key factors affecting reliability
Uses of models
Detecting climate change
Estimating and Interpreting climate sensitivity
The concept of climate sensitivity
Identifying the specific forces that caused recent climate change (attribution)
Predicting the future
Surface temperature projections
Projected changes in global precipitation and drought
Atmospheric and oceanic circulation change
The melting cryosphere
Sea level rise projection
Tropical cyclone and hurricane projection
Extreme weather projections
The importance of both observation and models in understanding the climate system and how they feed off of each other
What the models tell us
Content Summary:Climate change will affect us all, and not necessarily in a positive way. The potential impacts of climate change have been studied extensively. Some impacts are global in scope, while others are regional and local. See Wikipedia's Effects of Global Warming
Topics
Type of Impact
Sea level rise and coastal impacts
Disruption of the global food supply
Unlivable areas
Heat
Water supplies
Ecosystems and biodiversity
Shifting water and food resources
Severe storms
Human health impacts
Security concerns
Content Summary: Preventing climate change and global warming requires that humans stop adding to the greenhouse gases in the atmosphere, the sooner the better. Getting to zero emissions is essential. Technologies will help. Current national emissions provide a framework for looking at technologies and setting priorities. While getting emissions to zero, nations need to look beyond zero emissions to mechanisms for pulling greenhouse gases from the atmosphere.